Springe zum Hauptinhalt
+ 41 52 511 3200 (SUI)     + 1 713 364 5427 (USA)     
Inline-Viskositätsmessungen bei Polymerisationsreaktionen

Einleitung

Die Polymerherstellung ist aufgrund der Vielzahl von Anwendungen und der enormen wirtschaftlichen Auswirkungen eines der wichtigsten Gebiete der angewandten Chemie. Polymere sind Makromoleküle, die aus einfachen chemischen Bestandteilen (Monomeren) durch chemische Reaktion hergestellt werden und als Polymerisation bezeichnet werden. Sie haben sich von billigen Ersatzstoffen für Naturprodukte zu hochwertigen Optionen für eine Vielzahl von Anwendungen entwickelt. Sie werden als Folienverpackungen für feste Formteile von Automobilkarosserieteilen, Fernsehgehäusen, Flugzeugteilen, Schaumstoffen für Kaffeetassen und Kühlschrankisolierungen, Fasern für Bekleidung und Teppiche, Klebstoffen, Reifen- und Schlauchgummis, Farben und anderen Beschichtungen und vielem mehr verwendet andere Anwendungen.

Polymere

Anwendung

Polymerisationen sind schwierig online zu überwachen. Die Fähigkeit, den Umsatz bei chemischen Reaktionen im Allgemeinen und bei Polymerisationsreaktionen im Besonderen zu bestimmen, ist im Zusammenhang mit der Notwendigkeit, Prozesse genau zu überwachen und zu steuern und die Leistung bestehender sowie neuer Herstellungsprozesse zu verbessern, von außerordentlicher Bedeutung. Informationen zu Molekulargewichtsverteilungen und Endgruppenmustern sind häufig für eine genaue Prozess- und Produktkontrolle unerlässlich.

Unabhängig davon, ob eine Polymerisation über eine Addition als Kettenreaktion oder eine Kondensation in einer Stufenreaktion abläuft, ist es wichtig, die Chemie vollständig zu verstehen, um die Forschung voranzutreiben und / oder neue Polymere schnell auf den Markt zu bringen. Das Verständnis kritischer Polymerreaktionsparameter kann zu einer präzisen Steuerung von mehrstufigen Polymerisationen, Echtzeit-Restmonomermessungen und letztendlich zu verbesserten Eigenschaften des Endanwendungspolymers führen.

Herausforderungen

Anwendungsbezogen

Die Steuerung der Polymerisationsreaktion stellt den Chemieingenieur vor große Herausforderungen, da diese Reaktionen normalerweise stark exotherm sind und häufig in sehr viskosen Medien ablaufen, die den Wärme- und Massentransport erschweren. Diese Reaktionen sind dafür bekannt, dass sie nichtlineares Verhalten zeigen. In Reaktoren im industriellen Maßstab wurden mehrere Fälle von Multiplizitäten und anhaltenden Oszillationen berichtet.

Einschränkungen herkömmlicher Viskositätsmesstechniken

Das rheologische Verhalten der meisten Polymermaterialien ist recht komplex. Die Viskosität ist sowohl von der Scherung als auch von der thermischen Vorgeschichte abhängig. Oftmals wird die Polymerviskosität offline gemessen. Die meisten im Handel erhältlichen Viskosimeter werden zur Online-Prozesskontrolle verwendet – Monitoring Der Reaktionsgrad einer Polymerisationsreaktion gehört zu einer der folgenden Kategorien: 1. Viskosimeter, die auf druckbetriebenen Strömungen basieren (z. B. Kapillarviskosimeter), 2. Rotationsviskosimeter, 3. Fallender Kolben/Kugel und 4. Vibrationsrohre. Glaskapillarviskosimeter, die traditionell für Viskositätsmessungen verwendet werden, sind äußerst mühsam und zeitaufwändig – Glaskapillaren müssen zwischen den Tests gereinigt werden. Den meisten gängigen Viskosimetriegeräten mangelt es an hoher Wiederholgenauigkeit, weshalb sie für die Anwendung ungeeignet sind.

Die Polymerisationsreaktion wurde zuvor mit einer Reihe von Offline-Analysemethoden untersucht, darunter gravimetrische Analyse, NMR, GC, UV-Vis und Dilatometrie. Mit fortschreitender Reaktion macht die zunehmende Viskosität die Offline-Probenahme zunehmend problematisch, und daher konzentrierten sich diese früheren Untersuchungen auf Anfangsstadien der Polymerisationsreaktion.

Herkömmliche mechanische und elektromechanische Viskosimeter, die hauptsächlich für Labormessungen konzipiert sind, lassen sich nur schwer in die Steuerung und Überwachung integrierenoring Umfeld. Die derzeitige Testmethode in externen Laboren ist aufgrund der logistischen Herausforderungen beim Versand und der hohen Fixkosten nicht optimal und teuer. Die komplexen Veränderungen, die im Inneren stattfinden, können oft nicht anhand einer Routineprobe bestimmt werden, da die durch eine solche Probe dargestellten Daten lediglich eine Momentaufnahme des Zustands zum Zeitpunkt der Probenentnahme widerspiegeln und die herkömmliche Instrumentierung durch Schergeschwindigkeit, Temperatur und andere Faktoren beeinflusst werden kann Variablen.

Warum ist eine kontinuierliche Online-Viskositätsüberwachung?oring wichtig bei der Polymerisation?

Die präzise Entwicklung makromolekularer Materialien erfordert eine genaue Überwachungoring von Reaktionsbedingungen und Polymerisationsfortschritt, sei es im Bereich der radikalischen Polymerisation im industriellen Maßstab oder der kontrollierten Polymerisation im kleinen Maßstab. Gut regulierte Polymerisationsreaktionen ergeben Moleküle, die hinsichtlich Zusammensetzung, Molekulargewicht, Molekulargewichtsverteilung sowie strukturellen und physikalischen Eigenschaften gut charakterisiert sind. Um dies zu erreichen, ist es notwendig, die vielen chemischen und Reaktionsparameter, die mit dem Syntheseprozess verbunden sind, zu verstehen und sorgfältig zu kontrollieren und sicherzustellen, dass das synthetisierte Polymer für seinen beabsichtigten Zweck „zweckmäßig“ ist. Automatisierte Online-Überwachungoring ist ein unschätzbares Werkzeug zur Steuerung von Reaktionen, insbesondere wenn Prozesse mehrschrittig ablaufen. Polymerisationsreaktionen sind von Natur aus stark exotherm, schnell und empfindlich gegenüber kleinen Verunreinigungen (Spuren von Wasser). Darüber hinaus werden innerhalb einer einzigen Reaktion häufig mehrere Größenordnungen der Viskosität durchlaufen.

Echtzeitdaten können durch Online-Analyse von Polymerproduktionsprozessen erfasst werden, was ein schnelles kinetisches Screening und damit eine effiziente Reaktionsoptimierung ermöglicht. Eine Kombination aus beidem – kontinuierlicher Flussverarbeitung und Online-Überwachungoring – stellt ein ideales Werkzeug in jeder chemischen Synthese dar. Es ermöglicht eine kontinuierliche „Nonstop“-Analyse der Reaktionsmischung unter beliebigen Reaktionsbedingungen. Auf diese Weise werden ein schnelles und effizientes Screening und eine echte Hochdurchsatzoptimierung von Reaktionen möglich.

ACOMP (Automatische kontinuierliche Online-Überwachung).oring (Polymerisation) von Reaktionen kann als analytische Methode in der Forschung und Entwicklung, als Werkzeug zur Reaktionsoptimierung auf Labor- und Pilotanlagenebene und schließlich zur Rückkopplungssteuerung von Reaktoren im Originalmaßstab verwendet werden. Die In-situ-Echtzeitanalyse ist ein besseres Mittel zur Untersuchung dieser Polymerisation, da sie die Messgenauigkeit verbessert, den mit der Offline-Probenahme verbundenen Zeitaufwand und die Schwierigkeiten eliminiert und, was am wichtigsten ist, ein umfassenderes Verständnis der Reaktionskinetik und Thermodynamik ermöglicht.

Die Grenzviskosität ist ein wichtiges Instrument auf dem Gebiet der Polymer- und Proteinforschung und ist ein wesentlicher Bestandteil des ACOMP, und zwar aufgrund der folgenden Schlüsselpunkte:

  • Es ist ein Mittel, um die molekulare Struktur und die Wechselwirkung in der Lösung zu verstehen.
  • Die Messung der Grenzviskosität gilt als zuverlässiger als die Messung der Lichtstreuung, da damit niedrigere Molekulargewichte gemessen werden können.
  • Die Grenzviskosität (IV) ist ein Maß für das Molekulargewicht des Polymers und spiegelt daher den Schmelzpunkt, die Kristallinität und die Zugfestigkeit des Materials wider.
  • Die IV wird als Teil der Spezifikation verwendet, um die richtige PET-Sorte für eine bestimmte Anwendung auszuwählen, und wird an verschiedenen Punkten der Lieferkette gemessen. Das Material wird in allen Phasen von den Forschungs- und Entwicklungslabors getestet, die neue Polymere und Chemieunternehmen entwickeln, die Proben von ihren Polymerisationstürmen zu den Verarbeitern ziehen, die ihren Prozess und die Qualität der Fertigwaren kontrollieren möchten.

Es gibt mehrere motivierende Vorteile aus Kosten-, Umwelt- und Logistikgesichtspunkten bis hin zur Online-Viskositätsüberwachung in Echtzeitoring im Polymerproduktionsprozess. Echtzeit-Viskositätsinformationen haben sich als wertvoll erwiesen, um Einblicke in wichtige kinetische, mechanistische und chemische Strukturinformationen zu liefern und gleichzeitig die Schwierigkeiten zu beseitigen, die mit Offline-Messungen von Polymerisationsreaktionen verbunden sind. Die wichtigsten Punkte sind wie folgt:

Wirtschaftliche und logistische Vorteile, reduzierte Produktionskosten: Die Online-Viskositätsanalyse würde die Anzahl der Proben, die an externe Laboratorien geschickt werden, und die damit verbundenen Kosten verringern. Kontinuierliche Ergebnisse von Vor-Ort-Analysen würden auch den Arbeitsaufwand / die Kosten für den Versand und Stichprobenfehler reduzieren.

Verbesserte Prozesskontrolle durch bessere Analyse:

  • Analyse eines breiten Spektrums von Polymerisationen, einschließlich homogener (z. B. Radikale und Kondensation) und heterogener (z. B. Emulsion und Mikroemulsion)
  • Untersuchung von Kettenwachstum, Vernetzung und Härtung
  • Verständnis der mechanistischen Rolle von Katalysatoren bei Polymerisationen; Bestimmung der aktiven Spezies und der Kinetik des Katalysators
  • Überwachen Sie die Reaktionsbedingungen und passen Sie sie proaktiv an, um die Einhaltung der beabsichtigten Endproduktspezifikationen sicherzustellen
  • Messung der Restmonomergehalte und Sicherstellung, dass sie den Produkt- und behördlichen Anforderungen entsprechen.
  • Monitoring Reaktion während der gesamten Polymerisation. Die Offline-Stichprobenanalyse ist aufgrund der zunehmenden Viskosität und der mit der Probenentnahme verbundenen Schwierigkeiten auf die Untersuchung früher Stadien beschränkt.
  • Ermöglicht eine genauere Messung des Restmonomers in späteren Phasen der Polymerisationsreaktion, da es schwierig ist, die gesamte Probe aus dem Probenextraktor für die Offline-Analyse zu entnehmen.
  • Da es keine Verzögerung zwischen einzelnen Proben gibt, wird eine vollständigere Darstellung der Kinetik erreicht. Dies ermöglicht eine bessere Messung der Reaktionskinetik und die Möglichkeit, die Reaktionskinetik in Echtzeit vorherzusagen und zu steuern.
  • Bietet im Verlauf der Polymerisation weitaus mehr Analysedatenpunkte, was zu repräsentativeren Messungen und genauen Berechnungen der Kinetik und Thermodynamik führt.

Verbesserte Produktqualität und weniger Ausschuss: Verständnis der Chemie von Reaktionen beinhaltet Faktoren, einschließlich der Kinetik der Reaktion Monomerumsatz Raten und Reaktivitätsverhältnisse, um die Beziehung und den Einfluss der Reaktionsparameter auf das Molekulargewicht und die Verteilung, ein gründliches Verständnis der Polymerisationsmechanismus bei der Initiation, die Ausbreitung und die Beendigung Phasen und sichergestellt wird, dass Die gesamte Polymerstruktur erfüllt die Anforderungen der Zielanwendung. Die genaue Charakterisierung der Reaktionskinetik und die genaue Steuerung tragen dazu bei, die richtigen Polymereigenschaften zu erzielen und die Verschwendung zu reduzieren.

Reduzierter Energieverbrauch: Optimale Nutzung von Ressourcen und Strom in Reaktoren mit strenger Kontrolle über die Prozesse

Erhöhte Arbeitssicherheit: Weitere Faktoren wie die Gesundheits- und Sicherheitsanforderungen für die Arbeit mit Lösungsmitteln, die Berücksichtigung der Umwelt und der Bedarf an Fachpersonal für die Durchführung dieser Tests (die in einem Labor durchgeführt werden müssen) tragen zur hohen Beliebtheit der lösungsmittelfreien Methode bei.

Schnellere Antwortzeiten: In-situ-Viskositäts- (und Dichteanalyse) würde die Verzögerung zwischen der Probenahme und dem Erhalt einer Antwort vom Labor verringern / beseitigen.

Umwelt: Die Nutzung der Ressourcen kann durch Online-Überwachung maximiert werdenoring Systeme, was zu weniger Abfall führt, was gut für die Umwelt ist. Erhöhte Nachhaltigkeit durch reduzierte Emissionen.

Rheonics„Lösungen

Die automatisierte Inline-Viskositätsmessung in Echtzeit ist für die Polymerproduktion von entscheidender Bedeutung. Rheonics bietet auf Basis eines ausgewogenen Torsionsresonators folgende Lösungen zur Prozesskontrolle und -optimierung im Polymerisationsprozess an:

  1. In-line Viskosität Messungen: Rheonics' SRV ist ein Inline-Viskositätsmessgerät mit großem Messbereich und eingebauter Flüssigkeitstemperaturmessung. Es kann Viskositätsänderungen in jedem Prozessstrom in Echtzeit erfassen.
  2. In-line Viskosität und Dichte Messungen: Rheonics' SRD ist ein In-Line-Instrument zur gleichzeitigen Messung von Dichte und Viskosität mit eingebauter Flüssigkeitstemperaturmessung. Wenn die Dichtemessung für Ihren Betrieb wichtig ist, ist der SRD der beste Sensor, um Ihren Anforderungen gerecht zu werden. Er bietet ähnliche Betriebsfunktionen wie der SRV sowie genaue Dichtemessungen.

Die automatisierte In-Line-Viskositätsmessung über SRV oder SRD eliminiert die Schwankungen bei der Probenentnahme und den Labortechniken, die bei der Viskositätsmessung nach den herkömmlichen Methoden verwendet werden. Der Sensor ist in Reihe geschaltet und misst kontinuierlich die Viskosität (und Dichte bei SRD). Die Verwendung eines SRV / SRD mit ACOMP kann die Produktivität verbessern und die Gewinnspannen erhöhen. Beide Sensoren haben einen kompakten Formfaktor für eine einfache OEM- und Nachrüstinstallation. Sie erfordern keine Wartung oder Neukonfiguration. Beide Sensoren liefern genaue, wiederholbare Ergebnisse, unabhängig davon, wie oder wo sie montiert sind, ohne dass spezielle Kammern, Gummidichtungen oder mechanischer Schutz erforderlich sind. Ohne Verbrauchsmaterialien sind SRV und SRD extrem einfach zu bedienen.

Kompakter Formfaktor, keine beweglichen Teile und wartungsfrei

Rheonics„ SRV und SRD haben einen sehr kleinen Formfaktor für eine einfache OEM- und Nachrüstinstallation. Sie ermöglichen eine einfache Integration in jeden Prozessablauf. Sie sind leicht zu reinigen und erfordern keine Wartung oder Neukonfiguration. Sie haben eine geringe Stellfläche und ermöglichen eine Inline-Installation in jeder Prozesslinie, ohne dass zusätzlicher Platz oder Adapter erforderlich sind.

Hohe Stabilität und unempfindlich gegen Einbaubedingungen: Beliebige Konfiguration möglich

Rheonics SRV und SRD verwenden einen einzigartigen patentierten Koaxialresonator, bei dem sich zwei Enden der Sensoren in entgegengesetzte Richtungen drehen, wodurch Reaktionsdrehmomente bei ihrer Montage aufgehoben werden und sie somit völlig unempfindlich gegenüber Montagebedingungen und Durchflussraten werden. Regelmäßige Standortwechsel verkraften diese Sensoren problemlos. Das Sensorelement sitzt direkt in der Flüssigkeit, ein spezielles Gehäuse oder Schutzkäfig ist nicht erforderlich.

Sofortige genaue Anzeige der Prozessbedingungen - Vollständige Systemübersicht und vorausschauende Steuerung

RheonicsDie Software ist leistungsstark, intuitiv und bequem zu bedienen. Die Echtzeitviskosität kann auf einem Computer überwacht werden. Mehrere Sensoren werden von einem einzigen Dashboard aus verwaltet, das über die gesamte Fabrikhalle verteilt ist. Keine Auswirkung von Druckpulsationen beim Pumpen auf den Sensorbetrieb oder die Messgenauigkeit. Unbeeinflusst von Stößen, Vibrationen oder Strömungsbedingungen.

Einfache Installation und keine Neukonfigurationen / Neukalibrierungen erforderlich

Ersetzen Sie Sensoren, ohne die Elektronik auszutauschen oder neu zu programmieren, und ersetzen Sie sowohl den Sensor als auch die Elektronik direkt ohne Firmware-Updates oder Änderungen der Kalibrierungskoeffizienten. Einfache Montage. Wird in das ¾-Zoll-NPT-Gewinde im Tintenleitungsanschluss eingeschraubt. Keine Kammern, O-ring Dichtungen oder Dichtungen. Zur Reinigung oder Inspektion leicht abnehmbar. SRV mit Flansch und erhältlich tri-clamp Anschluss für einfache Montage und Demontage.

Niedriger Stromverbrauch

24V-Gleichstromversorgung mit einer Stromaufnahme von weniger als 0.1 A während des normalen Betriebs

Schnelle Reaktionszeit und temperaturkompensierte Viskosität

Ultraschnelle und robuste Elektronik, kombiniert mit umfassenden Rechenmodellen, machen es möglich Rheonics Geräte gehören zu den schnellsten und genauesten in der Branche. SRV und SRD liefern jede Sekunde genaue Echtzeitmessungen der Viskosität (und der Dichte bei SRD) und werden nicht durch Durchflussschwankungen beeinflusst!

Breite Einsatzmöglichkeiten

Rheonics„Instrumente sind für Messungen unter schwierigsten Bedingungen konzipiert. SRV verfügt über den umfangreichsten Einsatzbereich für Inline-Prozessviskosimeter auf dem Markt:

  • Druckbereich bis 5000 psi
  • Temperaturbereich von -40 bis 200 ° C
  • Viskositätsbereich: 0.5 cP bis 50,000 cP

SRD: Einzelinstrument, dreifache Funktion - Viskosität, Temperatur und Dichte

Rheonics„ SRD ist ein einzigartiges Produkt, das drei verschiedene Instrumente für Viskositäts-, Dichte- und Temperaturmessungen ersetzt. Dadurch entfällt die Schwierigkeit, drei verschiedene Instrumente gleichzeitig aufzustellen, und liefert äußerst genaue und wiederholbare Messungen unter härtesten Bedingungen.

An Ort und Stelle reinigen (KVP)

SRV (und SRD) überwacht die Bereinigung von Leitungen per Monitoring die Viskosität (und Dichte) des Lösungsmittels während der Reinigungsphase. Jeder kleine Rückstand wird vom Sensor erkannt, sodass der Bediener entscheiden kann, wann die Leitung für den vorgesehenen Zweck sauber ist. Alternativ liefert SRV Informationen an das automatische Reinigungssystem, um im Gegensatz zu Glaskapillaren eine vollständige und wiederholbare Reinigung zwischen den Läufen sicherzustellen.

Überlegenes Sensordesign und Technologie

Hochentwickelte, patentierte Elektronik der 3. Generation steuert diese Sensoren und wertet ihre Reaktion aus. SRV und SRD sind mit Industriestandard-Prozessanschlüssen wie ¾ Zoll NPT und 1 Zoll erhältlich. Tri-clamp Ermöglicht es Betreibern, einen vorhandenen Temperatursensor in ihrer Prozesslinie durch SRV/SRD zu ersetzen und liefert neben einer genauen Temperaturmessung mithilfe eines eingebauten Pt1000 (DIN EN 60751 Klasse AA, A, B verfügbar) äußerst wertvolle und verwertbare Informationen zu Prozessflüssigkeiten wie der Viskosität. .

Elektronik, die auf Ihre Bedürfnisse zugeschnitten ist

Die Sensorelektronik ist sowohl in einem explosionsgeschützten Messumformergehäuse als auch in einer Hutschienenmontage mit kleinem Formfaktor erhältlich und ermöglicht eine einfache Integration in Prozessrohrleitungen und in den inneren Geräteschränken von Maschinen.

 

Einfache Integration

Mehrere in der Sensorelektronik implementierte analoge und digitale Kommunikationsmethoden machen den Anschluss an industrielle SPS- und Steuerungssysteme einfach und unkompliziert. Es ist äußerst komfortabel, die Sensoren in einen ACOMP zu integrieren.

 

ATEX & IECEx Compliance

Rheonics bietet nach ATEX und IECEx zertifizierte eigensichere Sensoren für den Einsatz in gefährlichen Umgebungen. Diese Sensoren erfüllen die grundlegenden Gesundheits- und Sicherheitsanforderungen für die Konstruktion und den Bau von Geräten und Schutzsystemen, die für den Einsatz in explosionsgefährdeten Bereichen vorgesehen sind.

Die eigensicheren und explosionsgeschützten Zertifizierungen von Rheonics ermöglicht auch die Anpassung eines vorhandenen Sensors, sodass unsere Kunden den Zeit- und Kostenaufwand für die Identifizierung und Prüfung einer Alternative vermeiden können. Für Anwendungen, die eine Einheit bis zu Tausenden von Einheiten erfordern, können kundenspezifische Sensoren bereitgestellt werden; mit Vorlaufzeiten von Wochen statt Monaten.

Rheonics SRV & SRD sind sowohl ATEX als auch IECEx zertifiziert.

ATEX (2014 / 34 / EU) zertifiziert

Rheonics' ATEX-zertifizierte eigensichere Sensoren entsprechen der ATEX-Richtlinie 2014/34/EU und sind für Eigensicherheit nach Ex ia zertifiziert. Die ATEX-Richtlinie legt Mindest- und Grundanforderungen in Bezug auf Gesundheit und Sicherheit fest, um Arbeitnehmer zu schützen, die in gefährlichen Atmosphären beschäftigt sind.

Rheonics„ ATEX-zertifizierte Sensoren sind für den Einsatz in Europa und international anerkannt. Alle ATEX-zertifizierten Teile sind mit „CE“ gekennzeichnet, um die Konformität anzuzeigen.

IECEx-zertifiziert

Rheonics„Eigensichere Sensoren sind von IECEx, der Internationalen Elektrotechnischen Kommission, für die Zertifizierung nach Standards für Geräte zur Verwendung in explosionsgefährdeten Bereichen zertifiziert.

Hierbei handelt es sich um eine internationale Zertifizierung, die die Einhaltung der Sicherheitsvorschriften für den Einsatz in explosionsgefährdeten Bereichen gewährleistet. Rheonics Sensoren sind für Eigensicherheit nach Ex i zertifiziert.

Sytemimplementierung

Installieren Sie den Sensor direkt in Ihrem Prozessstrom, um Viskositäts- und Dichtemessungen in Echtzeit durchzuführen. Es ist keine Bypass-Leitung erforderlich: Der Sensor kann in die Leitung eingetaucht werden, Durchflussrate und Vibrationen beeinträchtigen die Messstabilität und -genauigkeit nicht. Optimieren Sie den Entscheidungsfindungsprozess durch wiederholte, aufeinanderfolgende und konsistente Tests der Flüssigkeit.

Rheonics Instrumentenauswahl

Rheonics entwickelt, produziert und vermarktet innovative Flüssigkeitssensorik und -überwachungoring Systeme. Präzision gebaut in der Schweiz, Rheonics'Inline-Viskosimeter verfügen über die von der Anwendung geforderte Empfindlichkeit und die Zuverlässigkeit, die erforderlich ist, um in einer rauen Betriebsumgebung zu bestehen. Stabile Ergebnisse – auch unter widrigen Strömungsbedingungen. Kein Einfluss von Druckabfall oder Durchflussmenge. Es eignet sich ebenso gut für Qualitätskontrollmessungen im Labor.

Vorgeschlagene Produkte für die Anwendung

• Breiter Viskositätsbereich - Überwachen Sie den gesamten Prozess
• Wiederholbare Messungen in newtonschen und nicht-newtonschen Flüssigkeiten, einphasigen und mehrphasigen Flüssigkeiten
• Ganzmetallkonstruktion (316L Edelstahl)
• Eingebaute Flüssigkeitstemperaturmessung
• Kompakter Formfaktor für die einfache Installation in vorhandenen Prozesslinien
• Einfach zu reinigen, keine Wartung oder Neukonfiguration erforderlich

• Einzelinstrument zur Messung von Prozessdichte, Viskosität und Temperatur
• Wiederholbare Messungen in newtonschen und nicht-newtonschen Flüssigkeiten, einphasigen und mehrphasigen Flüssigkeiten
• Ganzmetallkonstruktion (316L Edelstahl)
• Eingebaute Flüssigkeitstemperaturmessung
• Kompakter Formfaktor für die einfache Installation in vorhandenen Rohren
• Einfach zu reinigen, keine Wartung oder Neukonfiguration erforderlich

Suche